mouldable bone substitute

Sintlife-mouldable bone substitute

Mg-substituted apatite: just as nature dedigned it

It has been demonstrated that the presence of Mg2+ enables the hydroxyapatite crystal cell structure to become unstable and biologically active, promoting rapid cell-mediated material resorption, bone formation and remodelling.

In addition, Mg2+ substituted apatite displays improved surface properties: the biomaterial effectively interacts with water molecules* to rapidly capture the key proteins involved in osteogenesis.

*Bertinetti et al. Langmuir (2009)


Material resorption and new bone formation

SINTlife is a unique material that interacts with bone-forming cells and promotes deposition of new bone tissue. Thanks to its specific biomimetic chemical composition, nano-structure and surface properties, SINTlife is remodelled and resorbed by cellular action over a period of 6-18 months, allowing for sufficient biostimulative scaffold to remain during the formation and maturation of new bone. 

During the remodelling phase, osteoclastic resorption and osteoblastic osteogenenetic activities are seen around the remaining SINTlife particles*, up to a complete bone regeneration. As a result, SINTlife leads to a physiological, rapid and effective repair.

*Landi et al., J. Mater Sci: Mater Med (2008)

SINTlife is ideal for various surgical procedures:

· Maintaining the bone crest

· Maxillary sinus lift also through crest

· Periodontal bone lesions

· Furcations (Classes I and II)

SINTlife may be mixed with autologous bone, biological fluids, bone marrow concentrate and growth factors.

SINTlife is available with the following codes:


q.ty per Package
Putty 2 syringes 0,5 cc each.
2x0,5 cc


q.ty per Package
Microgranules 450-600 micron – 0,5 g
Microgranules 600-900 micron – 0,5 g
Microgranules 450-600 micron
2 single-doses 0,5 g
Microgranules 600-900 micron
2 single-doses 0,5 g
  1. Barbanti Brodano, G., Mazzoni, E., Tognon, M., Griffoni, C. & Manfrini, M. Human mesenchymal stem cells and biomaterials interaction: a promising synergy to improve spine fusion. Eur Spine J 21 Suppl 1, S3–9 (2012).
  2. Bròdano, G. B. et al. Hydroxyapatite-Based Biomaterials vs. Autologous Bone Graft in Spinal Fusion: An in Vivo Animal Study. Spine (2014). doi:10.1097/BRS.0000000000000311
  3. Caneva, M. et al. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs. Clin Oral Implants Res 22, 512–517 (2011).
  4. Canullo, L., Bignozzi, I., Cocchetto, R., Cristalli, M. P. & Iannello, G. Immediate positioning of a definitive abutment versus repeated abutment replacements in post-extractive implants: 3-year follow-up of a randomised multicentre clinical trial. Eur J Oral Implantol 3, 285–296 (2010).
  5. Canullo, L., Heinemann, F., Gedrange, T., Biffar, R. & Kunert-Keil, C. Histological evaluation at different times after augmentation of extraction sites grafted with a magnesium-enriched hydroxyapatite: double-blinded randomized controlled trial. Clin Oral Implants Res 24, 398–406 (2013).
  6. Canullo, L. & Sisti, A. Early implant loading after vertical ridge augmentation (VRA) using e-PTFE titanium-reinforced membrane and nano-structured hydroxyapatite: 2-year prospective study. Eur J Oral Implantol 3, 59–69 (2010).
  7. Checchi, V., Savarino, L., Montevecchi, M., Felice, P. & Checchi, L. Clinical-radiographic and histological evaluation of two hydroxyapatites in human extraction sockets: a pilot study. Int J Oral Maxillofac Surg 40, 526–532 (2011).
  8. Crespi, R., Capparè, P., Addis, A. & Gherlone, E. Injectable magnesium-enriched hydroxyapatite putty in peri-implant defects: a histomorphometric analysis in pigs. Int J Oral Maxillofac Implants 27, 95–101 (2012).
  9. Crespi, R., Capparè, P. & Gherlone, E. Magnesium-enriched hydroxyapatite compared to calcium sulfate in the healing of human extraction sockets: radiographic and histomorphometric evaluation at 3 months. J. Periodontol. 80, 210–218 (2009).
  10. Crespi, R., Capparè, P. & Gherlone, E. Dental implants placed in extraction sites grafted with different bone substitutes: radiographic evaluation at 24 months. J. Periodontol. 80, 1616–1621 (2009).
  11. Crespi, R., Capparè, P. & Gherlone, E. Osteotome sinus floor elevation and simultaneous implant placement in grafted biomaterial sockets: 3 years of follow-up. J. Periodontol. 81, 344–349 (2010).


Bibliography sintlife
June 03rd 2014 2/2

  1. Crespi, R. et al. Magnesium-enriched hydroxyapatite versus autologous bone in maxillary sinus grafting: combining histomorphometry with osteoblast gene expression profiles ex vivo. J. Periodontol. 80, 586–593 (2009).
  2. Dallari, D. et al. A prospective, randomised, controlled trial using a Mg-hydroxyapatite - demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials 33, 72–79 (2012).
  3. Manfrini, M. et al. Mesenchymal stem cells from patients to assay bone graft substitutes. J. Cell. Physiol. 228, 1229–1237 (2013).
  4. Rebaudi, A., Maltono, A. A., Pretto, M. & Benedicenti, S. Sinus grafting with magnesium-enriched bioceramic granules and autogenous bone: a microcomputed tomographic evaluation of 11 patients. Int J Periodontics Restorative Dent 30, 53–61 (2010).
  5. Sisti, A. et al. Clinical evaluation of a ridge augmentation procedure for the severely resorbed alveolar socket: multicenter randomized controlled trial, preliminary results. Clin Oral Implants Res 23, 526–535 (2012)